
REVIEWED

By Anne Nord at 4:56 pm, Nov 15, 2019

11/13/2019 15 cg

Worklist: 3827

LAB CASE ITEM	ITEM TYPE	DESCRIPTION
M2019-4695 1	вск	AM 28 Blood Multi-Drug Quant Panel 2 by LC-QQQ
M2019-4750 3	вск	AM 28 Blood Multi-Drug Quant Panel 2 by LC-QQQ
M2019-4870 2	вск	AM 28 Blood Multi-Drug Quant Panel 2 by LC-QQQ
P2019-3410 1	ВСК	AM 28 Blood Multi-Drug Quant Panel 2 by LC-QQQ

C

AM# 28: Multi-Drug Quantitation in Blood by LC-MS/MS

Extraction Date: 11/13/19 Analyst: Tamara Salazar Plate lot#: Item #:IDP-112 Lot:190730 Plate Expiration: 01/30/20

Blank Blood Lot: 445283-3 **Column**: Agilent 120 EC-C18 (2.1x 100-2.7um)

LCMS-QQQ ID: 069901

Pre-Analytic:

- \boxtimes 2. Ensure correct column is installed and begin mobile phase flow allow to equilibrate \sim 30 minutes.

Analytic:

- ☑ 1. Remove standards, plate, controls, and samples from cold storage. Allow to reach room temperature.
- ⊠ 3. Place on shaking incubator at ambient temp., 900rpm for 15 minutes. Shaker ID: 067105
- × 4. Pipette 250μL 00.5M ammonium hydroxide in wells of analytical plate.

- ∑ Apply positive pressure for approx. 10-15 seconds (or until no liquid remains on top of sorbent). (Load at 85-100 PSI- Selector to the right) Manifold ID: 067104
- ⊠ 8. Wait 5 minutes.
- ⊠ 9. Add 900uL ethyl acetate.
- \boxtimes 10. Wait 5 minutes.
- ⊠ 11. Apply positive pressure for approx. 15 seconds. (10-15 PSI- Selector to the left).
- □ 12. Add 900uL ethyl acetate.
- ⋈ 13. Wait 5 minutes.
- ⊠ 14. Apply positive pressure for approx. 15 seconds. (10-15 PSI- Selector to the left).
- 🗵 16. Reconstitute in 100μL 20% MeOH and heat seal plate with foil. Place in autosampler and run worklist.

Post-Analytic

✓ 1. Create batch and process data.

Worklist path: D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS Batch Name: MDQ P2 wklst 3827 TS_evaluated compounds

- \boxtimes 3. Integration linear and R² values \ge 0.98 for each analyte.

- ⊠ 6. Central File Packet to include: LIMS Worklist, Method Checklist, Calibration and Control Reports.

COMMENTS: Compounds evaluated: 7 aminoflunitrazepam, Etizolam, Flunitrazepam, Flurazepam, Midazolam, Tapentadol

Curves limited: Flurazepam 5-250

Urine controls were included, as a urine case sample from a different worklist was added to the extraction plate.

Idaho State Police Forensic Services

AM #28 Blood and Urine Multi-Drug Confirmatory Analysis by LCMS-QQQ---Panel 2

Methanol External Control Solution (Lot: 020419)

100 ul each 1 mg/mL stock solution in 9600 ul MeOH

Component	Source	Source Lot Number	Expiration Date
Methanol (LCMS)	Fisher	184782	*
Midazolam	Cerilliant	FE01161704	04/30/2022
Etizolam	Cerilliant	FN06061606	11/30/2020
7-Aminoflunitrazepam	Cerilliant	FN01271505	02/28/2020
Flurazepam	Cerilliant	FE02101501	04/30/2020
Prepared:	02/04/19		
Prepared By:	Tamara Salazar		
Expires:	02/04/2020		

Urine External Control Solution (Lot: WS111319)

100 ul of methanol external control solution was added to 9900 ul of blood.

Approximately 50ng/mL of each compound.

Component	Source	Source Lot Number
Negative Urine	Pocatello Lab	POC031319
Methanol External Control	-	020419
Solution		
Prepared:	11/13/19	
Prepared by:	Celena Shrum	
Expires:	02/04/2020	

Calibration Last Update Batch results

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

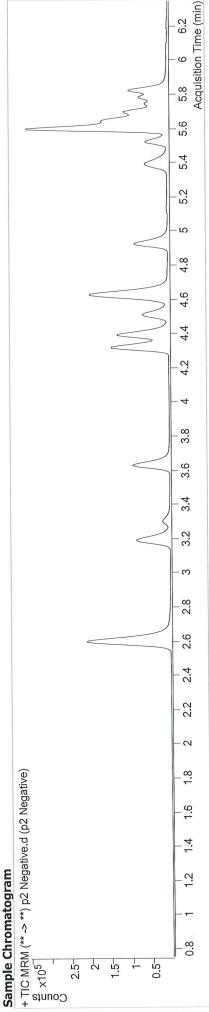
Instrument

Sample

MDQ P2 Combined 092319.m P1-D6

11/13/2019 5:29:04 PM

Injection Volume Sample Position


Acq. Method

Type

Acq. Date-Time Sample Info.

Data File Sample Operator Comment

p2 Negative.d p2 Negative

Batch results Calibration Last Update

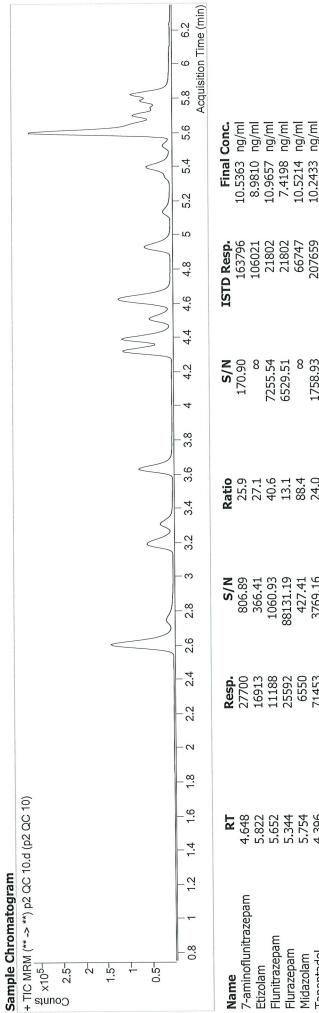
D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

MDQ P2 Combined 092319.m P1-H6

11/13/2019 3:43:56 PM

Injection Volume Sample Position

Acq. Method


Instrument

Acq. Date-Time Sample Info.

Comment Operator Sample

Data File

p2 QC 10.d p2 QC 10

Name	RT	Resp.	S/N	Ratio	I/S
7-aminoflunitrazepam	4.648	27700	806.89	25.9	170.9
Etizolam	5.822	16913	366.41	27.1	U
Flinitrazenam	5,652	11188	1060.93	40.6	7255.5
Flirazenam	5.344	25592	88131.19	13.1	6529.5
Midazolam	5.754	6550	427.41	88.4	U
Tapentadol	4.396	71453	3769.16	24.0	1758.9

10.5363 ng/ml 8.9810 ng/ml

ng/ml ng/ml

106021 21802 21802 66747 207659

10.5214 10.2433 7.4198

ng/ml

8.9810 10.9657

Batch results

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

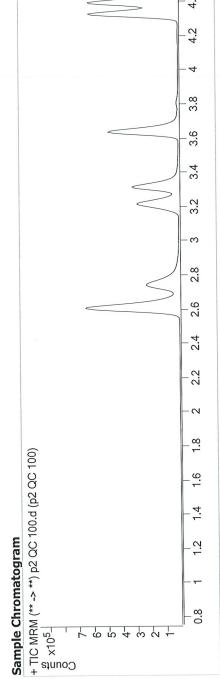
Calibration Last Update

MDQ P2 Combined 092319.m P1-G6

11/13/2019 4:04:58 PM

Injection Volume Sample Position

Acq. Method


Instrument

Acq. Date-Time

Sample Info.

Data File Sample Operator Comment

p2 QC 100.d p2 QC 100

		2 (min)	
		6.2 Time (m	
		5.8 6 6.2 Acquisition Time (min)	
	3	5.6	Conc. ng/ml ng/ml ng/ml ng/ml ng/ml
		4.5	Final Conc. 105.3548 ng/ml 116.6129 ng/ml 103.1394 ng/ml 111.0142 ng/ml 98.6841 ng/ml 97.8599 ng/ml
		2.5	105 116. 103. 111. 98.
		- ι υ	46 112 552 552 87
		- 4. 8.	ISTD Resp. 250046 101112 21052 21052 96387 314122
		4.6	ISI
		- 4.	
		- 4 .2	S/N 3115.48 734.41 ∞ 311.57 2809.04 34535.33
		-4	311 73 31 280 3453
		~ % _ %	
		3.6	0 1222147
		3.4	Ratio 25.5 26.2 42.2 13.1 88.4 23.7
		3.2	
		_ ო	N 49 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
		2.8	S/N 2977.49 ~ 2207.76 60131.61 445.89 40934.60
		2.6	Φ 4
	,	2.4	95. 35. 51. 81. 115. 84.
		2.2	Resp. 402035 190851 101381 480824 88215 1067984
		- 7	
		_ 8 .	
	00 100 100	-1.6	►82244E
	d (p2 C	4.	RT 4.648 5.822 5.652 5.344 5.754 4.403
E	3C 100.	-21	
Sample Chromatogram	+ TIC MRM (** -> **) p2 QC 100.d (p2 QC 100) size x + 10		spam
roma	* ^- **	8.0	nitrazé am ſ
ple Cl	MRM (105—105—105—105—105—105—105—105—105—105—	_ C O	Name 7-aminoflunitrazepam Etizolam Flunitrazepam Flurazepam Midazolam Tapentadol
Sam	+ sunuoO N X O X O 10 M N		Name 7-aminof Etizolam Flunitraz Flunazep Midazola

AM #28 Multi-Drug Quant. Results

Calibration Last Update Batch results

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

Instrument

MDQ P2 Combined 092319.m

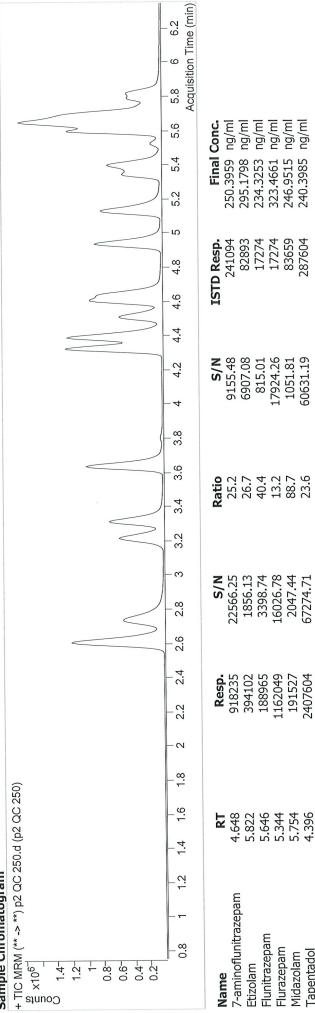
P1-F6

Injection Volume Sample Position

Acq. Method

Type

Acq. Date-Time


Sample Info.

11/13/2019 4:25:58 PM

Operator Comment Data File Sample

p2 QC 250.d p2 QC 250

Sample Chromatogram

Tapentadol

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

Calibration Last Update Batch results

Instrument

Falco QC MDQ P2 Combined 092319.m P1-E6

11/13/2019 4:47:00 PM

Injection Volume Sample Position

Acq. Method

Type

Acq. Date-Time Sample Info.

Operator Comment Data File Sample

p2 QC 1000.d p2 QC 1000

Sample Chromatogram

+ TIC MRM (** -> **) p2 QC 1000.d (p2 QC 1000)

-	5.8 6 6.2 Acquisition Time (min)	cure range to
	5.8 6 Acquisition	abstale
	5.4	al Conc. 5 ng/ml 1 ng/ml 1 ng/ml 3 ng/ml 9 ng/ml 9 ng/ml
	5.2	Final Conc. 892.8755 ng/ml 1574.6791 ng/ml 836.4181 ng/ml 2517.9943 ng/ml 979.9069 ng/ml 1005.2549 ng/ml
	- 4. - 5.	1STD Resp. 208874 42597 18026 8026 67086 222085
	4.6	ISTD 2
	4.2 4.4	6/N 3.57 3.37 5.57 5.57 5.07 5.07
	-4	S/N 11728.57 3673.37 5976.57 19827.06 10486.07 43592.33
	3.6	Ratio 25.3 26.3 42.0 13.5 89.2 23.2
	3.2 3.4	Ra 26 27 28 21 25 22 25 25 25 25 25 25 25 25 25 25 25
	2.8	S/N 45687.63 11267.07 1004.38 59680.93 13291.00
	2.2 2.4 2.6	Resp. 2831758 1077549 313371 4223592 609300 7783451
	1.8	
	1.4	RT 4.648 5.822 5.844 5.344 5.754 4.396
2.5 3 4 1.5 7 2 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.8 1 1.2	Name 7-aminoflunitrazepam Etizolam Flunitrazepam Flurazepam Midazolam
County		Name 7-aminofluni Etizolam Flunitrazepaı Flurazepam Midazolam

Generated at 8:19 AM on 11/15/2019

p2 QC 1000

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

Batch results

Calibration Last Update

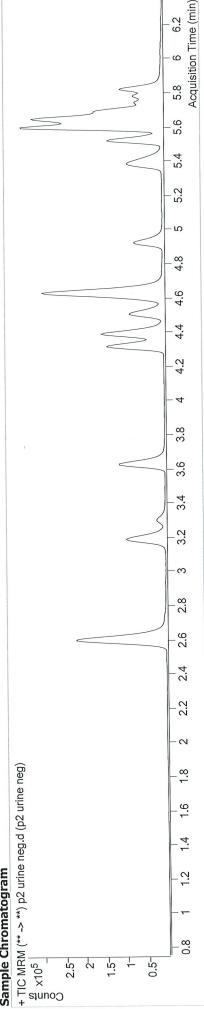
MDQ P2 Combined 092319.m Sample P1-G5

11/13/2019 7:14:07 PM

Injection Volume Sample Position

Acq. Method

Instrument


Type

Acq. Date-Time Sample Info.

Operator Comment Data File Sample

p2 urine neg.d p2 urine neg

Sample Chromatogram

Generated at 8:19 AM on 11/15/2019

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

Calibration Last Update

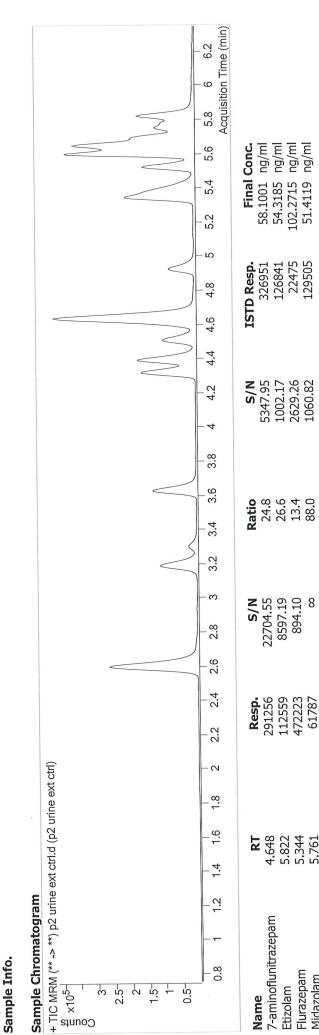
Batch results

MDQ P2 Combined 092319.m P1-F5 Sample

11/13/2019 7:35:09 PM

Injection Volume Sample Position

Acq. Method


Type

Instrument

Acq. Date-Time

Data File Sample Operator Comment

p2 urine ext ctrl.d p2 urine ext ctrl

102.2715 ng/ml 51.4119 ng/ml

22475 129505 126841

1002.17 2629.26 1060.82

894.10

5.344 5.761

Flurazepam Midazolam

7-aminoflunitrazepam

Etizolam

8597.19

54.3185 ng/ml

Batch results

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827

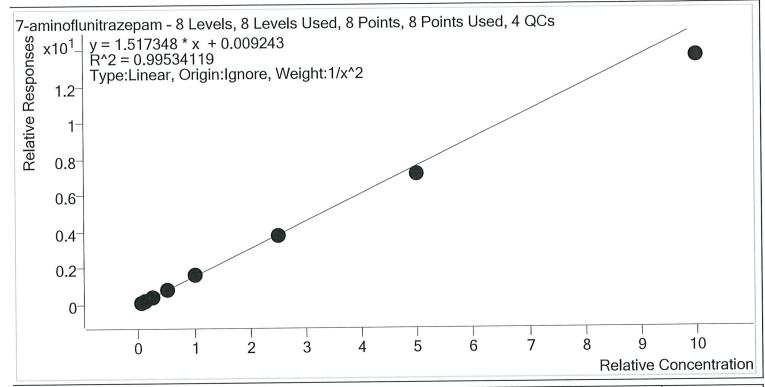
TS_evaluated compounds.batch.bin

Last Cal. Update

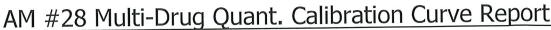
11/14/2019 9:43 AM

Analyst Name

ISP\datastor


Analyte

7-aminoflunitrazepam


Internal Standard

7-aminoflunitrazepam-

D7

Sample	Level	Enabled	Expected Concentration	Final Concentration	Accuracy
p2 Cal 1-5ng	1	✓	5.0	4.8	97.0
p2 Cal 2- 10ng	2	✓	10.0	10.2	102.3
p2 Cal 3 -25ng	3	✓	25.0	26.6	106.5
p2 Cal 4-50ng	4	✓	50.0	51.7	103.5
p2 Cal 5-100ng	5	✓	100.0	106.4	106.4
p2 Cal 6-250ng	6	✓	250.0	250.2	100.1
p2 Cal 7-500ng	7	✓	500.0	473.3	94.7
p2 Cal 8-1000ng	8	✓	1000.0	895.9	89.6

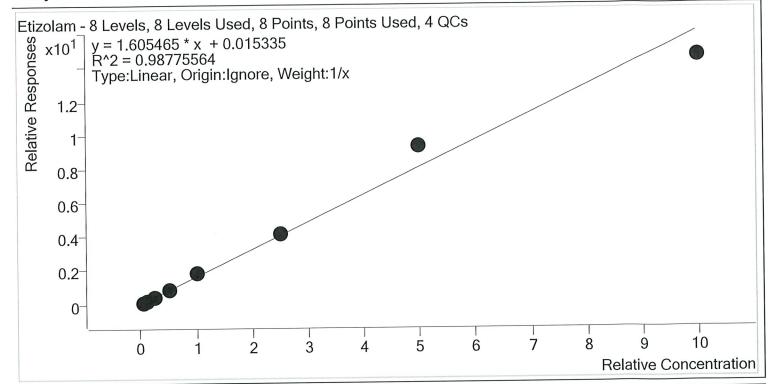
Batch results D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827

TS_evaluated compounds.batch.bin

Last Cal. Update

11/14/2019 9:43 AM

Analyst Name


ISP\datastor

Analyte

Etizolam

Internal Standard

Estazolam-D5

Sample	Level	Enabled	Expected Concentration	Final Concentration	Accuracy
p2 Cal 1-5ng	1	✓	5.0	4.0	80.3
p2 Cal 2- 10ng	2	✓	10.0	9.4	93.7
p2 Cal 3 -25ng	3	✓	25.0	25.5	101.9
p2 Cal 4-50ng	4	✓	50.0	52.2	104.3
p2 Cal 5-100ng	5	✓	100.0	111.9	111.9
p2 Cal 6-250ng	6	✓	250.0	255.3	102.1
p2 Cal 7-500ng	7	✓	500.0	575.3	115.1
p2 Cal 8-1000ng	8	✓	1000.0	906.5	90.6

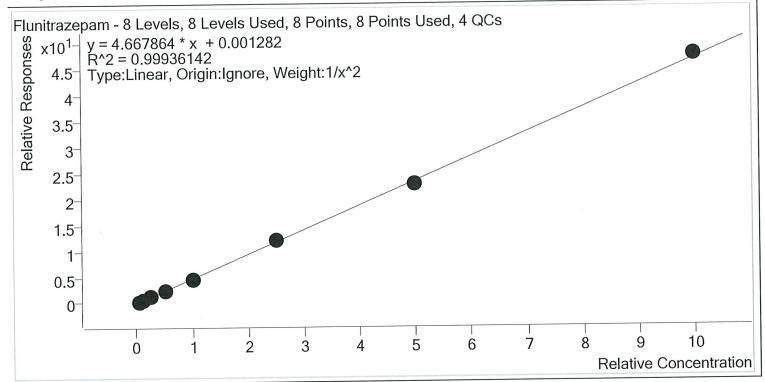
Batch results D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827

TS_evaluated compounds.batch.bin

Last Cal. Update

11/14/2019 9:43 AM

Analyst Name


ISP\datastor

Analyte

Flunitrazepam

Internal Standard

Flunitrazepam-D7

Sample	Level	Enabled	Expected Concentration	Final Concentration	Accuracy
p2 Cal 1-5ng	1	✓	5.0	4.9	99.0
p2 Cal 2- 10ng	2	✓	10.0	10.2	102.0
p2 Cal 3 -25ng	3	✓	25.0	25.2	100.9
p2 Cal 4-50ng	4	✓	50.0	50.0	100.0
p2 Cal 5-100ng	5	✓	100.0	96.8	96.8
p2 Cal 6-250ng	6	√	250.0	256.6	102.7
p2 Cal 7-500ng	7	√	500.0	485.6	97.1
p2 Cal 8-1000ng	8	✓	1000.0	1016.0	101.6

Batch results

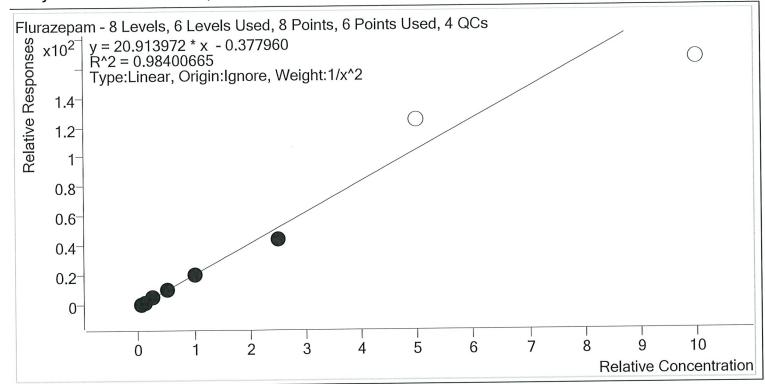
D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827

TS_evaluated compounds.batch.bin

Last Cal. Update

11/14/2019 9:43 AM

Analyst Name


ISP\datastor

Analyte

Flurazepam

Internal Standard

Flunitrazepam-D7

Sample	Level	Enabled	Expected Concentration	Final Concentration	Accuracy
p2 Cal 1-5ng	1	✓	5.0	4.7	93.7
p2 Cal 2- 10ng	2	✓	10.0	10.8	107.5
p2 Cal 3 -25ng	3	✓	25.0	28.6	114.5
p2 Cal 4-50ng	4	✓	50.0	49.2	98.4
p2 Cal 5-100ng	5	✓	100.0	100.9	100.9
p2 Cal 6-250ng	6	✓	250.0	212.2	84.9
p2 Cal 7-500ng	7	×	500.0	599.2	119.8
p2 Cal 8-1000ng	8	×	1000.0	793.3	79.3

Batch results

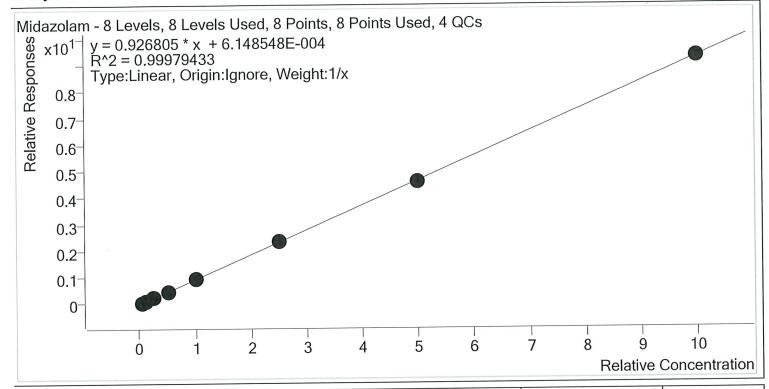
D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827

TS_evaluated compounds.batch.bin

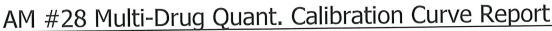
Last Cal. Update

11/14/2019 9:43 AM

Analyst Name


ISP\datastor

Analyte


Midazolam

Internal Standard

Midazolam-D4

Sample	Level	Enabled	Expected Concentration	Final Concentration	Accuracy
p2 Cal 1-5ng	1	✓	5.0	4.9	98.5
p2 Cal 2- 10ng	2	✓	10.0	10.2	101.7
p2 Cal 3 -25ng	3	✓	25.0	24.7	99.0
p2 Cal 4-50ng	4	✓	50.0	48.2	96.4
p2 Cal 5-100ng	5	✓	100.0	104.1	104.1
p2 Cal 6-250ng	6	✓	250.0	253.5	101.4
p2 Cal 7-500ng	7	✓	500.0	494.0	98.8
p2 Cal 8-1000ng	8	✓	1000.0	1000.3	100.0

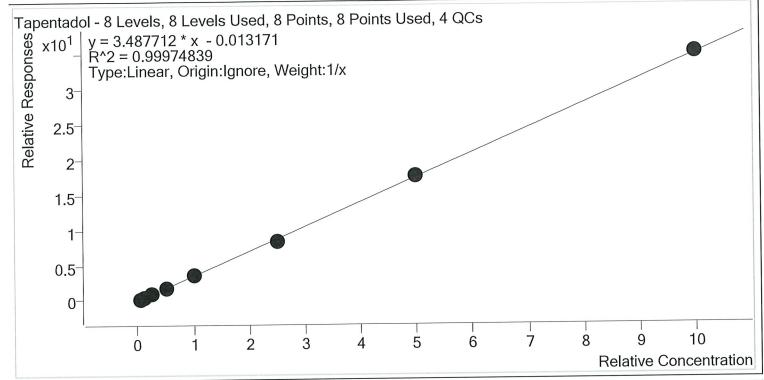
D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 **Batch results**

TS_evaluated compounds.batch.bin

Last Cal. Update

11/14/2019 9:43 AM

Analyst Name


ISP\datastor

Analyte

Tapentadol

Internal Standard

Tapentadol-D3

Sample	Level	Enabled	Expected Concentration	Final Concentration	Accuracy
p2 Cal 1-5ng	1	✓	5.0	5.3	106.9
p2 Cal 2- 10ng	2	✓	10.0	10.2	102.3
p2 Cal 3 -25ng	3	✓	25.0	24.2	96.9
p2 Cal 4-50ng	4	✓	50.0	47.5	94.9
p2 Cal 5-100ng	5	✓	100.0	100.6	100.6
p2 Cal 6-250ng	6	✓	250.0	242.9	97.1
p2 Cal 7-500ng	7	✓	500.0	503.2	100.6
p2 Cal 7-300ng	8	✓	1000.0	1006.1	100.6

Calibration Last Update Batch results

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

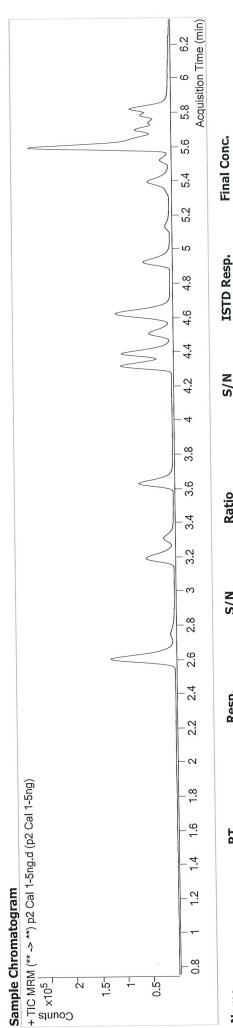
MDQ P2 Combined 092319.m P1-H7

11/13/2019 1:48:08 PM

Injection Volume Sample Position

Acq. Method

Type


Instrument

Acq. Date-Time

Sample Info.

Data File Sample Operator Comment

p2 Cal 1-5ng.d p2 Cal 1-5ng

	L	Resp.	S/N	Ratio	S/N
		17377	1253 31	0.96	900.41
7-aminoflunitrazepam	4.048	1777	1700071	0 1	L .
Etizolam	5 822	7917	14783.89	25.9	445.95
	1 6E2	5063	526.15	47.4	567.79
Flunitrazepam	2.032		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1057 70
Flirazenam	5.344	13129	/531.51	14.1	1071
1 1 d d C C C C C C C C C C C C C C C C	F 754	3159	711.90	94.2	8
Midazolam	to / . o	1 1 1	0.000	700	452 16
Tapentadol	4.396	3/501	7529.43	+. C7	01.201

4.8493 ng/ml 4.0173 ng/ml 4.9486 ng/ml

ng/ml lm/gn lm/gn

148836 99177 21799 21799 68297 216537

4.9249 5.3432 4.6869

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

Calibration Last Update

Batch results

MDQ P2 Combined 092319.m

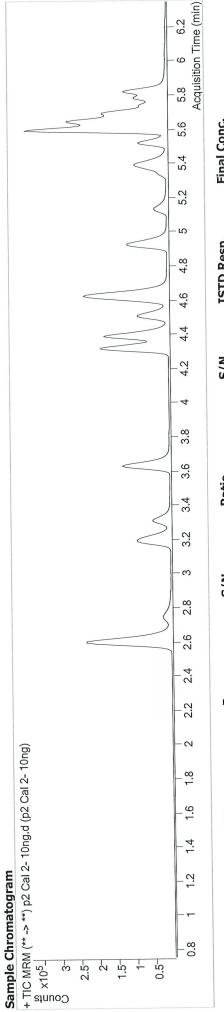
P1-G7

Injection Volume Sample Position

Acq. Method

Instrument

Acq. Date-Time


Sample Info.

11/13/2019 1:58:48 PM

Operator Comment Data File Sample

p2 Cal 2- 10ng.d p2 Cal 2- 10ng

p2 Cal 2- 10ng

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

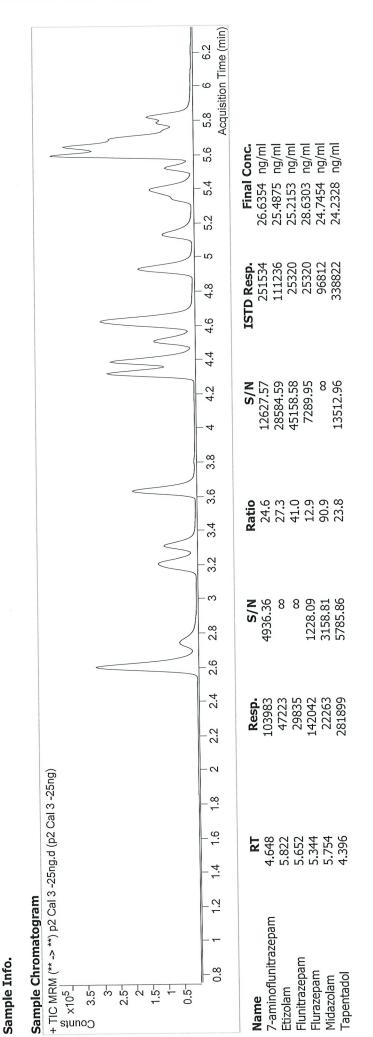
Batch results

Calibration Last Update

Data File Sample Operator Comment

MDQ P2 Combined 092319.m P1-F7 11/13/2019 2:09:18 PM

> Injection Volume Sample Position


Acq. Method

Type

Instrument

Acq. Date-Time

p2 Cal 3 -25ng.d p2 Cal 3 -25ng

p2 Cal 3 -25ng

Calibration Last Update Batch results

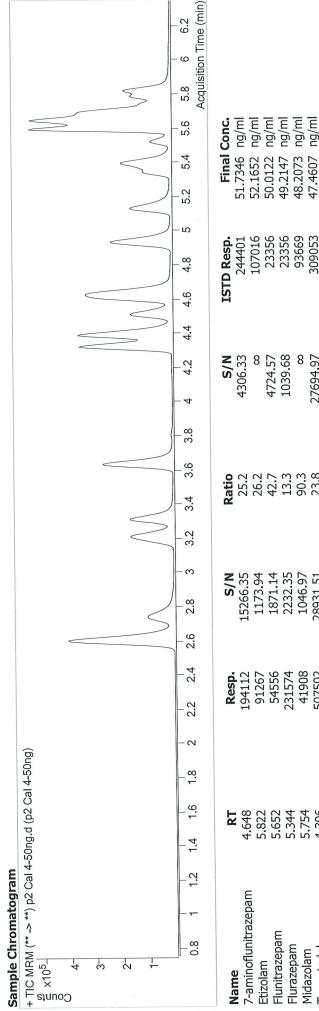
D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

Instrument

MDQ P2 Combined 092319.m P1-E7

> Sample Position Injection Volume Acq. Date-Time

Acq. Method


Type

Sample Info.

11/13/2019 2:19:48 PM

Operator Comment Data File Sample

p2 Cal 4-50ng.d p2 Cal 4-50ng

	FQ	Recn	N/S	Ratio	S/N	ISTD Resp.	Ε
Name	Z				1206.22	244401	51 734
7_aminoflunitrazenam	4 648	194112	15266.35	7.07	4200.22	TO1117	0 :-0
	F 822	91267	1173.94	26.2	8	107016	52.165
EUZOIdili	0.022 F 6F7	54556	1871.14	42.7	4724.57	23356	50.012
Fluntrazepam	2,032	231574	2232.35	13.3	1039.68	23356	49.214
Hurazepam	++C.C	41908	1046 97	90.3	8	69986	48.207
Midazolam Tanentadol	5.73 4 4.396	507502	28931.51	23.8	27694.97	309053	47.460

ng/ml ng/ml

AM #28 Multi-Drug Quant. Results

Calibration Last Update Batch results

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

Instrument

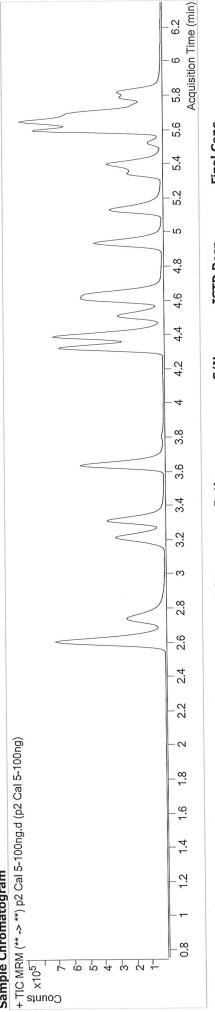
MDQ P2 Combined 092319.m P1-D7

11/13/2019 2:30:18 PM

Injection Volume Sample Position

Acq. Method

Type


Acq. Date-Time

Sample Info.

Operator Comment Data File Sample

p2 Cal 5-100ng.d p2 Cal 5-100ng

Sample Chromatogram

Final Conc.	100.6128 ng/ml 111.8600 ng/ml 96.8182 ng/ml 100.8884 ng/ml 104.1251 ng/ml 100.6128 ng/ml
ISTD Resp.	271357 109397 24673 24673 102667 353526
N/S	7290.37 354452.96 2843.74 1006.70 1453.21 198462.93
Ratio	25.2 26.9 40.5 13.3 90.5 23.6
N/U	58510.80 3587.33 2339.40 1379.48 2809.31 74055.38
Q	40562 198141 111538 511273 99140 1235897
l d	4.648 5.822 5.652 5.344 5.754
	Name 7-aminoflunitrazepam Etizolam Flunitrazepam Flurazepam Midazolam Tapentadol

AM #28 Multi-Drug Quant. Results

Calibration Last Update Batch results

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

Instrument

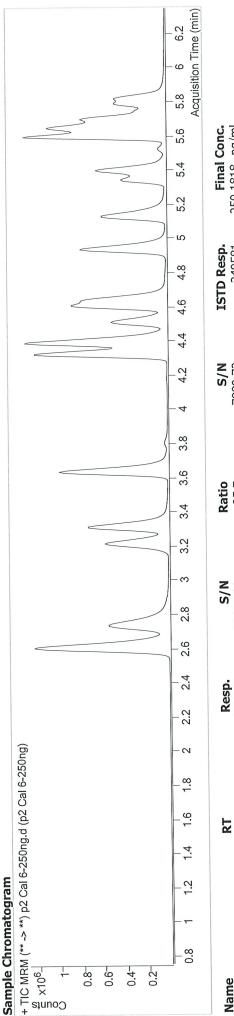
P1-C7

Sample Position Injection Volume Acq. Date-Time

Acq. Method

Type

MDQ P2 Combined 092319.m


11/13/2019 2:40:49 PM

Operator Comment Data File Sample

p2 Cal 6-250ng.d p2 Cal 6-250ng

Sample Info.

Final Conc. 250.1818 ng/ml 255.3142 ng/ml 256.6346 ng/ml 212.1931 ng/ml 253.5249 ng/ml 242.8692 ng/ml
1STD Resp. 249581 98393 21324 21324 88502 301989
S/N 7889.73 3698.09 962.34 1890.06 1441.73 25344.68
Ratio 25.7 27.0 27.0 41.2 12.8 87.9 23.7
S/N 36193.20 14907.53 3172.17 2149.80 1073.96
Resp. 949747 404821 255470 938237 208005 2554041
RT 4.648 5.822 5.652 5.344 5.754 4.396
Name 7-aminoflunitrazepam Etizolam Flunitrazepam Flurazepam Midazolam Tapentadol

AM #28 Multi-Drug Quant, Results

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

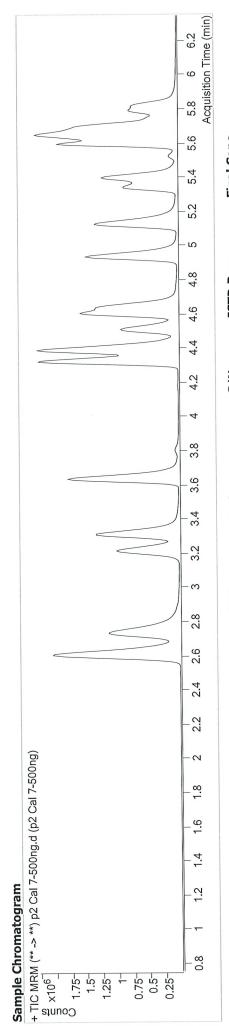
Calibration Last Update

Batch results

MDQ P2 Combined 092319.m P1-B7

11/13/2019 2:51:20 PM

Injection Volume Sample Position


Acq. Method

Instrument

Acq. Date-Time Sample Info.

Data File Sample Operator Comment

p2 Cal 7-500ng.d p2 Cal 7-500ng

Final Conc.	473.3024 ng/ml 575.3072 ng/ml 485.5637 ng/ml 599.1929 ng/ml 493.9528 ng/ml 503.1838 ng/ml
	247088 79797 16482 16482 86582 271244
N/S	17365.30 4266.31 2885.05 1909.88 1718.20 42210.36
Datio	25.7 26.3 26.3 42.3 13.1 88.4 23.4
N/O	47483.50 3392.67 8127.66 195199.71 8000.98 194372.35
6	1776781 738261 373590 2059194 396426 4756654
ŀ	4.648 5.822 5.646 5.337 5.754 4.396
	Name 7-aminoflunitrazepam Etizolam Flunitrazepam Flurazepam Midazolam Tapentadol

AM #28 Multi-Drug Quant. Results

Batch results Calibration Last Update

D:\MassHunter\Data\2019\AM 28\11139 MDQ P1 and P2 TS\QuantResults\MDQ P2 wklst 3827 TS_evaluated compounds.batch.bin 11/14/2019 9:43:45 AM

Instrument

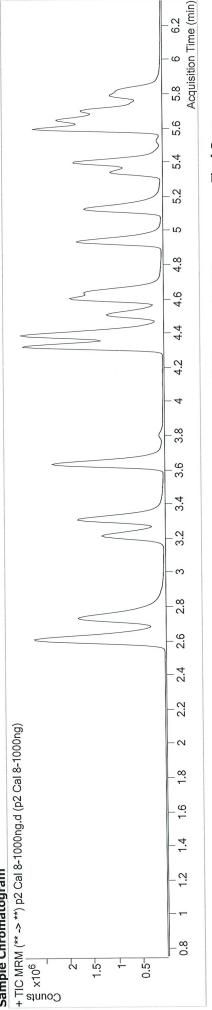
יות כדיכדיפ פוטא/דו/בו

Falco Cal MDQ P2 Combined 092319.m P1-A7

11/13/2019 3:01:50 PM

Sample Position Injection Volume

Acq. Method


Acq. Date-Time

Sample Info.

Data File Sample Operator Comment

p2 Cal 8-1000ng.d p2 Cal 8-1000ng

Final Conc. 895.9268 ng/ml 906.4807 ng/ml 1015.9722 ng/ml 793.2826 ng/ml 1000.3451 ng/ml 1006.0695 ng/ml
ISTD Resp. 198411 74167 15334 15334 61985 183459
S/N 77879.32 3160.56 3200.98 23287.80 1586.20 62970.54
Ratio 25.4 26.2 41.5 13.3 88.1 23.1
S/N 210920.00 8836.77 20209.89 45975.96 1764.45
Resp. 2699104 1080513 727199 2538138 574714 6434951
RT 4.648 5.822 5.652 5.344 5.754 4.396
Name 7-aminoflunitrazepam Etizolam Flunitrazepam Flurazepam Midazolam Tapentadol